
J .  3"Euid iMeel~  (l965), vol. 22, purl 3, pp .  413-418 
Printed in Great Brituin 

443 

Wall layers with non-uniform shear stress 

By A. J. REYNOLDS 
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(Received 14 December 1964) 

The empirical description of turbulent wall layers across which the shear stress 
varies is considered. The description given by Townsend for zero-stress layers 
is found to be inapplicable to uniform pressure flows in pipes and two-dimen- 
sional channels, and to a boundary layer developing in the absence of a pressure 
gradient. 

1. Introduction 
Townsend (1961 a )  has generalized Prandtl's description of turbulent flow 
near a smooth wall 

(1)  
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--_- - 

obtaining 

where aU/ay is the gradient of the time-mean velocity, 7 is the time-mean local 
shear stress, y is the distance measured from the wall, K N 0.40 is the fundamental 
von KArman constant, and B is an absolute constant characterizing the lateral 
diffusion of turbulence energy through the wall layer. Consideration of the data 
describing a self-preserving zero-stress layer led to the prediction that the 
constant B N 0-18 (Townsend 1961b). 

We shall attempt to obtain Townsend's result (2) from dimensional considera- 
tions alone, without discussing the structure of the turbulence within the wall 
layer. Then empirical data relating to simple channel flows will be introduced to 
determine the constant B for these cases. 

2. Dimensional arguments 
We restrict consideration to turbulent wall layers that are uniform in the direc- 

tion of a unidirectional mean flow, such as would arise ultimately in long circular 
tubes or two-dimensional channels. In  these cases there must exist in the fully 
turbulent part of the flow a relationship of the form (Townsend 1956) 

=f(70,P,h7Y) 

among the variables describing the motion. Here 70 is the shear stress a t  the wall, 
and h is a length characterizing the width of the flow, half the channel width for 
two-dimensional flows, and the pipe radius for pipe flows. 
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These parameters are related by 

so that the relationship may be rewritten 

a more convenient starting point for the present discussion. Dimensional homo- 
geneity requires that 

Expressing this result as a simple power series (as seems permissible since 
Prandtl’s basic result (1)  gives a good description of the flow near the wall), 
we mav write 

y dU 2 
___- - a,+al (y) + u 2 ( 9  + .... 
(T/P)J dy 

(3) 

This result, truncated to two terms, is formally just that (2) given by Townsend 
(1961 a). His analysis seems equivalent to the following. 

The starting point is the energy equation valid in the fully turbulent part of 
the motion : 

where u, w, ui, p are fluctuations in the turbulent flow, and 6 gives the dissipation 
of energy. Note that ZLV = - r / p  very nearly, in this part of the flow. We find also 

v(p/p + iu;) = b(7/p)* and e = (a /y )  (r/p)* that 

with a and b dimensionless constants, on the assumption that these quantities 
depend on r ,  y, and p but not on a. The energy equation then gives 

___-.. 

dU a r 4 3 b y d r  
- dY = Y -(-) P [1-:!aFGl. 

which may be rewritten in the forms (2) or (3). 

3. Empirical information 
We shall now determine the constant a1 which gives the primary effect of 

varying shear, not by examining the extreme case of a zero-stress layer, but by 
a study of simple channel flows and boundary layers. To do this in a simple way, 
we introduce the mixing length E defined by 

dU -=+) 1 7 4  . 

(Note that the length defined here is used simply as a means of presenting data 
compactly; no special physical importance is to be imputed to it.) Now the series 
(3) may be rewritten 

dy 1 P 

y/E = a, - al(y/h) + . . . since y /h  = - ya/7,. 
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(1) Circular tubes 
Schlichting (1955, p. 408) quotes the result of Nikuradse’s empirical determina- 
tion of the variation of mixing length across a circular tube, 

l / y  = 0.40 - O*44y/h + 0 * 2 4 ( ~ / h ) ~  - 0 * 0 6 ( ~ / h ) ~ .  
Then a, = 2.5, and a1 = - 2.75 for this flow. 

(2) Two-dimensional channels 
So far as is known, the data for this case are not available in the convenient form 
given above for circular tubes. The mean velocity and shear stress measurements 
of Laufer (1950) have been analysed to obtain this information. The calculated 
values of the mixing length are shown in figures 1 and 2. 

0 

0 Y 

Ylh 
FIGURE 1. Variation of mixing length with distance from the wall in two-dimensional 
channel flow. Data from Laufer (1950). Channel Reynolds number: 0 R = 12,300, 
8 R = 30,800, 0 R = 61,600. 

Only the part of the data describing fully-turbulent flow is relevant to our study. 
If we take 

6 = 50v/(ro/p)* or 6/h = 50/R(~/pU,2)* with R = U,h/v, 
to give the inner boundary of the turbulent region (see Schlichting 1955, p. 407) 
we can use Laufer’s measurements (table 1) to determine the limits of applica- 
bility of the data. Note that U, is the velocity a t  the centre line of the channel. 
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It appears that only the highest few points shown in figure 1 are relevant to the 
empirical relationship sought. 

Turning to figure 2 we see that the scatter is very great for high values of 
y / h ;  it  was impossible to determine the small velocity gradients accurately from 
the data available. However, in the intermediate range the data is consistent 
enough for our purpose. 
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Y b  
FIGURE 2. See caption of figure 1.  

R (7:p u$ SjlL 
12,300 0-042 0.096 
30,800 0.038 0.043 
61,600 0.037 0.022 

TABLE 1. 

We take a, = 2.5 as the basis of the calculation, a choice which will be justified 
a posteriori, and require in addition that the empirical curve pass through the 
points ( y / h ,  Z/h) equal to (0.20, 0.058) and (0.40, 0.096). Then 

Z/y = 0.4 - 0*7y /h+  0*75(y/h)'. 

This curve is consistent with the relevant data of figure 1 as well. For y /h  > 0.5, 
it  gives quite unrealistic values. We find that a, = - 4.37 for two-dimensional 
channel flow. 
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( 3 )  Boundary layer in absence of pressure gradient 
From the data describing the variation of time-mean velocity through a turbu- 
lent boundary layer (Townsend 1956), we choose the points (y/S,, Z,/KS,) equal 
to (0.2, 0.166) and (0.4, 0-242) to represent the variation of mixing length near 
the wall. Then 

l ,/Ky = 1 - O * 7 1 3 ~ / S o - O ~ 6 9 ( ~ / 6 ~ ) 2  

is an approximate expression for the mixing length. Here 

10 = ( . o / P ) W ~ / d Y )  

is a mixing length based on the shear stress near the wall. 
The stress variation across the boundary layer is given quite accurately by 

r = ro[l - O*733y/S0] for y/So < 1.0. 

1 = Z,(T/T,)* = lo[l - 0.733 y/6,]* Then 

and to the first order 

But for the linear shear stress variation So = - 0.733ro/a, so that 

l /Ky = 1 - 1-08y/6,. 

liy/l = 1 - 1*47ay/~, 

to the first order in the parameter of expansion. Taking a, = l/K = 2.5, as 
before, we find a, = - 3.68, while B = 1.47. 

4. Conclusions 

are given in table 2. Two conclusions emerge from this tabulation. 
The values of the parameters a, and B applicable to the several flows considered 

Flow a1 B 

Circular pipe - 2.75 1.10 
Zero-stress boundary layer - 0.45 0.18 

Two-dimensional channel - 4.37 1-75 
Boundary layer with zero 
pressure gradient - 3-68 1-47 

TABLE 2.  

(1) There is no universal equilibrium layer, save for the familiar logarithmic 
layer in which the mixing length varies linearly with distance from the wall. 
We conclude that the influence of the core flow (which undoubtedly differs in 
structure from flow to flow) extends so far into the wall layer that no region exists 
in which the stress gradient is a dominant parameter. 

(2) For the most common wall flows, the parameter B = 1.5 f 0.4, a value 
differing by nearly an order-of-magnitude from that characterizing the zero- 
stress layer. However, this parameter varies little enough among flows with 
large wall stress, that the assumption of a constant value ( B  2~ 1.5) for a wide 
variety of wall layers could be valid for some calculations. 
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